INOVA Fairfax Hospital South Patient Tower Falls Church, VA

Mike Morder Mechanical Option Advisor: Dr. William Bahnfleth

INOVA South Patient Tower

Introduction

- Depth 1: Central Chilled Water Plant
- Depth 2: Dedicated Heat Recovery Chiller
- Depth 3: Condensate Recovery
- Breadth 1: Two-Way Slab Reinforcing
- Breadth 2: Electrical
- Conclusion
- Questions

Building Introduction

Existing Mechanical System

- Connected to Existing Campus Central Plant
- Steam System-
 - Domestic Hot Water Heating
 - Heat Exchangers Provide HHW
- Chilled Water System-
 - Supplies Cooling to AHUs
 - No Booster Pumps in Building

Design Objective

- Chilled Water Plant Optimization Study
 - Chiller Design/ Layout
 - Centrifugal vs. Absorption
 - Primary Secondary vs. Variable Primary Flow
 - Dedicated Heat Recovery Chiller
 - Air-Handler Condensate Recovery System

Best Selections = Most Economical

Design Alternatives

- Location: 5th Floor Mechanical Space
- Alternative 1: Purchased CHW and Steam
- Alternative 2: Centrifugal (Primary/Secondary)
 - Alternative 3: Centrifugal (VPF)
- Alternative 4: Absorption (Primary/Secondary)
- Alternative 5: Absorption (VPF)

Variable Primary Flow

Absorption Chiller COP: 1.12

First Costs

Energy Costs

Energy Cost Comparison

Emissions

Life-Cycle Cost Analysis

	Alt. 1	Alt. 2	Alt. 3	Alt. 4	Alt. 5
Simple Payback	BASELINE	5.6 yrs.	5.3 yrs.	32.1 yrs.	26.9 yrs.
Discounted Payback	BASELINE	7.0 yrs.	6.0 yrs.	30+ yrs.	30+ yrs.

Dedicated Heat Recovery Chiller

25 ton and 32 ton Modules

Dedicated Heat Recovery Chiller

Dedicated Heat Recovery Chiller

Condensate Recovery System

Condensate
$$\left(\frac{lbs}{hr}\right) = CFM * \rho_{air} * 60 \frac{min}{hr} * \Delta w$$

Where:

CFM = Airflow over Coil ρ_{air} = density of air Δw = difference in humidity ratios across cooling coil

	January	February	March	April	May	June
Condensate (1000 gal.)	1.1	0.8	8.6	7.5	53.9	128.0
	July	August	September	October	November	December
Condensate (1000 gal.)	203.9	161.1	86.4	4.7	6.8	1.8

Condensate Recovery System

	Amount (1000 gal.)	Annual Cost
Water (Make-Up)	4,891	\$ 10,565
Reduced Make-Up	4,226	\$ 9,129
Savings	14 %	14 %

Depth Conclusions

SPB: BASE 5.3 5.2 5.1

Breadth Conclusions

- Additional Reinforcing Necessary in Slab
 Cost: \$ 1,306
- Additional Electrical Equipment Needed
 Cost: \$ 73,500

Recommendations

- Centrifugal Chillers with VPF
 - Dedicated Heat Recovery Chiller
 - Condensate Recovery
- Savings: \$ 2.729 million over 30 year life
 Simple Payback: 5.1 years
- Additional Structural / Electrical Costs Included
 Savings: \$ 2.655 million over 30 year life
 Simple Payback: 5.6 years

THANK YOU

QUESTIONS?